
Automatic Template Extraction from
Heterogeneous Web Pages

Rashmi D Thakare , Mrs. Manisha R Patil

Dept. of computer science n engineering
SKNCOE,

Pune, India

Abstract-Many web sites contain large sets of pages generated
using a common template or layout. For example, Amazon
lays out the author, title, comments, etc. in the same way in all
its book pages. The values used to generate the pages (e.g., the
author, title,...) typically come from a database. In this paper,
we study the problem of automatically extracting the database
values from the web pages without any learning examples or
other similar human input. We formally define the notion of a
template, and propose a model that describes how values are
encoded into pages using a template. We present an extraction
algorithm that uses sets of words that have similar occurrence
pattern in the input pages, to construct the template. The
constructed template is then used to extract values from the
pages. We show experimentally that the extracted values
make semantic sense in most cases.

Keywords: - Webpage sectioning, webpage segmentation,
template detection, isotonic regression. Information
extraction; Wrapper induction; Clustering; Web modelling;
Web mining.

1. INTRODUCTION
The World Wide Web is a vast and rapidly growing

source of information. Most of this information is in
unstructured HTML pages that are targeted at a human
audience. The unstructured nature of these pages makes it
hard to do sophisticated querying over the information
present in them. There are, however, many web sites that
contain a large collection of pages that have more
“structure.” These web pages encode data from an
underlying structured source, like a relational database, and
are typically generated dynamically.

An example of such a collection is the set of book pages
in Amazon shows two example book pages from Amazon
[1].

The classic analysis of hashing schemes often entails the
assumption that the hash functions used are random. More
precisely, the assumption is that keys belonging to a
universe U are hashed into a table of size M by choosing a
function h uniformly at random among all the functions U !
[M]. (The notation [M] stands for the set {0, . . . , M−1}.
This is slightly non-standard, but convenient for our
purposes.) This assumption is impractical since just
specifying such a function requires |U| log(M) bits1, which
usually far exceeds the available storage[2].The increased
use of content-management systems to generate web pages
has significantly enriched the browsing experience of end
users; the multitude of site navigation links, sidebars,
copyright notices, and timestamps provide easy to access

and often useful information to the users. From an objective
standpoint, however, these “template” structures pollute the
content by digressing from the main topic of discourse of
the webpage. Furthermore, they can cripple the
performance of many modules of search engines, including
the index, ranking function, summarization, duplicate
detection, etc. With template content currently constituting
more than half of all HTML on the web and growing
steadily [3, 11], it is imperative that search engines develop
scalable tools and techniques to reliably detect templates on
a webpage. Most existing methods for template detection
operate on a per website basis by analyzing several web
pages from the site and identifying content and/or structure
that repeats across many pages. While these “site-level”
template detection methods offer a lot of promise, they are
of limited use because of the following two reasons. First,
site-level templates constitute only a small fraction of all
templates on the web[3]. In a variety of applications
ranging from optimizing queries on alphanumeric attributes
to providing approximate counts of documents containing
several query terms, there is an increasing need to quickly
and reliably estimate the number of strings (tuples,
documents, etc.) matching a Boolean query. Boolean
queries in this context consist of substring predicates
composed using Boolean operators. While there has been
some work in estimating the selectivity of substring
queries, the more general problem of estimating the
selectivity of Boolean queries over substring predicates has
not been studied[4]. As well as the paper investigates
techniques for extracting data from HTML sites through the
use of automatically generated wrappers. To automate the
wrapper generation and the data extraction process, the
paper develops a novel technique to compare HTML pages
and generate a wrapper based on their similarities and
differences. Experimental results on real-life data-intensive
Web sites confirm the feasibility of the approach[5]. A
large number of Web sites contain highly structured
regions. The pages contained in these regions are generated
automatically, either statically or dynamically, by programs
that extract the data from a back-end database and embed
them into an HTML template. As a consequence, pages
generated by the same program exhibit common structure
and layout, while differing in content[6].Clustering is a
fundamental tool in unsupervised learning that is used to
group together similar objects, and has practical importance
in a wide variety of applications such as text, web-log and
market-basket data analysis. Typically, the data that arises

Rashmi D Thakare et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (2) , 2015, 1296-1299

www.ijcsit.com 1296

in these applications is arranged as a contingency or co-
occurrence table, such as, word-document co-occurrence
table or webpage-user browsing data. Most clustering
algorithms focus on one-way clustering, i.e., cluster one
dimension of the table based on similarities along the
second dimension. For example, documents may be
clustered based upon their word distributions or words may
be clustered based upon their distribution amongst
documents[7]. Template material is common content or
formatting that appears on multiple pages of a site. Almost
all pages on the web today contain template material to a
greater or lesser extent. Common examples include
navigation sidebars containing links along the left or right
side of the page; corporate logos that appear in a uniform
location on all pages; standard background colours or
styles; headers or dropdown menus along the top with links
to products, locations, and contact information; banner
advertisements; and footers containing links to homepages
or copyright information. The template mechanism is used
to support many purposes, particularly navigation,
presentation, and branding[8]. The clustering procedure
arises in many disciplines and has a wide range of
applications. In many applications, such as document
clustering, collaborative filtering, and microarray analysis,
the data can be formulated as a two dimensional matrix
representing a set of dyadic data. Dyadic data refer to a
domain with two finite sets of objects in which
observations are made for dyads, i.e., pairs with one
element from either set. For the dyadic data in these
applications, co-clustering both dimensions of the data
matrix simultaneously is often more desirable than
traditional oneway clustering. This is due to the fact that
co-clustering takes the benefit of exploiting the duality
between rows and columns to effectively deal with the high
dimensional and sparse data that is typical in many
applications. Moreover, there is an additional benefit for
co-clustering to provide both row clusters and column
clusters at same time. For example, we may be interested in
simultaneously clustering genes and experimental
conditions in bioinformatics applications simultaneously
clustering documents and words in text mining
simultaneously clustering users and movies in collaborative
filtering[9]. Clustering is a fundamental data mining
problem with a wide variety of applications. It seeks good
partitioning of the data points such that points in the same
cluster are similar to each other and the points in different
clusters are dissimilar. Many real-life applications involve
large data matrices. For example, in text and web log
analysis, the term-document data can be represented as
contingency table. In biology domain, the gene expression
data are organized in matrices with rows representing genes
and columns representing experimental conditions.
Recently there has been a growing research interest in
developing co-clustering algorithms that simultaneously
cluster both columns and rows of the data matrix. Co-
clustering takes advantage of the duality between rows and
columns to effectively deal with the high dimensional
data[10]. The MDL (Minimum Description Length)
principle for statistical model selection and statistical
inference is based on the simple idea that the best way to

capture regular features in data is to construct a model in a
certain class which permits the shortest description of the
data and the model itself. Here, a model is a probability
measure, and the class is a parametric collection of such
models; an example is the likelihood function. Despite its
simplicity the idea represents a drastically different view of
modelling. First, the model class has to be such that its
members can be described or encoded in terms of a finite
number of symbols, say the binary. We give a brief
description of the elementary coding theory needed in the
appendix. This requirement also means that the traditional
nonparametric models as some sort of idealized and
imagined data generating distributions cannot be used
unless they can be ¯tted to data. In the MDL approach we
just ¯t models to data, and no assumption that the data are a
sample from a `true' random variable is needed. This in one
stroke eliminates the difficulty in the other approaches to
modelling that the more complex a model we ¯t the better
estimate of the `truth' we get, a problem that has had only
ad hoc solutions[11]. The availability of tools that simplify
the design and implementation of data-intensive web sites
has greatly contributed to the explosive growth of the Web.
These tools involve “a combination of templates and design
conventions” including templates for common types and
classes of pages, as well as sets of templates for common
pages in sub-sites. By automatically populating these
templates with content, web site designers and content
producers of large web portals achieve high levels of
productivity and improve the usability of the sites by
enforcing the uniformity of the pages[12].

2. LITERATURE SURVEY :-

[1].Arasu and H. Garcia-Molina-
Arvind Arasu Hector Garcia-Molina They presented an

algorithm, EXALG, for extracting structured data from a
collection of web pages generated from a common
template. EXALG first discovers the unknown template
that generated the pages and uses the discovered template
to extract the data from the input pages. EXALG uses two
novel concepts,equivalence classes and differentiating
roles, to discover the template. Our experiments on several
collections of web pages, drawn from many well-known
data rich sites, indicate that EXALG is extremely good in
extracting the data from the web pages. Another desirable
feature of EXALG is that it does not completely fail to
extract any data even when some of the assumptions made
by EXALG are not met by the input collection. In other
words the impact of the failed assumptions is limited to a
few attributes. There are several interesting directions for
future work. The first direction is to develop techniques for
crawling, indexing and providing querying support for the
“structured” pages in the web. Clearly, a lot of information
in these pages is lost when naive key word indexing, and
searching is used. they indicate two specific problems in
this direction. First, how do we automatically locate
collections of pages that are · structured? Second, is it
feasible to generate some large “database” from these
pages? Any technique for solving the latter problem has to
be much less sophisticated than the one discussed here,
possibly by sacrificing accuracy for efficiency. Also when

Rashmi D Thakare et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (2) , 2015, 1296-1299

www.ijcsit.com 1297

we work at the scale of the entire web we might be able to
leverage the redundancy of the data on the web as in Brin
The second direction of work is to develop techniques for
automatically annotating the extracted data, possibly using
the words that appear in the template.
[3]. D. Chakrabarti, R. Kumar, and K. Punera

They presented a framework for classifier based page-
level template detection that constructs the training data
and learns the notion of “templateness” automatically using
the site-level template detection approach. We formulated
the smoothing of classifier assigned templateness scores as
a regularized isotonic regression problem on trees, and
presented an efficient algorithm to solve it exactly; this
may be of independent interest. Using human-labeled data
we empirically validated our system’s performance, and
showed that template detection at the page-level, when
used as a pre-processing step to web mining applications,
such as duplicate detection and webpage classification, can
boost accuracy significantly.
[4] Z. Chen,F. Korn,N. Koudas, and S. Muithukrishnan
They generalize the problem of substring selec- tivity
estimation for Boolean predicates. Our novel idea is to
capture correlations between Boolean query predicates in a
space-e client but approximate manner. We employ a
Monte Carlo technique called set hashing to succinctly
represent the set of strings containing a given substring
predicate as a signature vector of hash values. Correlations
among substring predicates can then be generated by
operating on these signatures. We present an algorithm to
estimate the selectivity of any Boolean query and
experimentally demonstrate the superiority of our
approach.
[6] V. Crescenzi, P. Merialdo, and P. Missier

In this paper They have presented an algorithm to cluster
pages from a data intensive Web site, based on the page
structure. The structural similarity among pages is defined
with respect to their DOM trees. The algorithm identifies
the main classes of pages offered by the site by visiting a
small yet representative number of pages. The resulting
clustering can be used to build a model that describes the
structure of the site in terms of classes of pages and links
among them. The model can be used for several purposes.
First, for each class of pages in the model we can generate
a wrapper: the visited pages which have been grouped into
one cluster can be used as input samples for automatic
wrapper generator systems, overcoming the issue of the
manual selection phase. Once a wrapper for each class has
been built, the model can be used also for classifying pages,
with the objective of determining which wrapper has to be
applied against a given page.
[7]. I.S. Dhillon, S. Mallela, and D.S. Modha

They have provided an information-theoretic formulation
for co-clustering, and presented a simple-to-implement,
top-down, computationally efficient, principled algorithm
that intertwines row and column clusterings at all stages
and is guaranteed to reach a local minimum in a finite
number of steps. We have presented examples to motivate
the new concepts and to illustrate the efficacy of our
algorithm. In particular, word-document matrices that arise
in information retrieval are known to be highly sparse [7].

For such sparse high dimensional data, even if one is only
interested in document clustering, our results show that co-
clustering is more effective than a plain clustering of just
documents. The reason is that when co-clustering is
employed, we effectively use word clusters as underlying
features and not individual words. This amounts to implicit
and adaptive dimensionality reduction and noise removal
leading to better clusters. As a side benefit, co-clustering
can be used to annotate the document clusters.

3. PROPOSED APPROACH FRAMEWORK AND DESIGN

3.1 Problem Definition
we generalize the problem of substring selectivity

estimation for Boolean predicates. Our novel idea is to
capture correlations between Boolean query predicates in a
space-e_ client but approximate manner. We employ a
Monte Carlo technique called set hashing to succinctly
represent the set of strings containing a given substring
predicate as a signature vector of hash values. Correlations
among substring predicates can then be generated by
operating on these signatures. We present an algorithm to
estimate the selectivity of any Boolean query and
experimentally demonstrate the superiority of our
approach. While there has been some work in estimating
the selectivity of substring queries, the more general
problem of estimating the selectivity of Boolean queries
over substring predicates has not been studied.

3.2 Proposed Architecture and Design

EXALG to solve the EXTRACT problem. Figure 2
shows the different sub-modules of EXALG. Broadly,
EXALG works in two stages. In the first stage (ECGM), it
discovers sets of tokens associated with the same type
constructor in the (unknown) template used to create the
input pages.

In the second stage (Analysis), it uses the above sets to
deduce the template. The deduced template is then
used to extract the values encoded in the pages. This
section outlines EXALG for our running example.

Figure 1: Modules of EXALG

In the first stage, EXALG (within Sub-module FINDEQ)

computes “equivalence classes” — sets of tokens
having the same frequency of occurrence in every page

in Pe. An example of an equivalence class(call εe1) is the
set of 8 tokens{<html>,<body>,Book.....,</html>} where
each token occurs exactly once in every input page. There

Rashmi D Thakare et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (2) , 2015, 1296-1299

www.ijcsit.com 1298

are other equivalence classes. EXALG retains only the
equivalence classes that are large and whose tokens occur
in a large number of input pages. We call such equivalence
classes _ LFEQs (for Large and Frequently occurring
Equivalence classes). For the running example there are
two LFEQs. The first is εe1 shown above. The second,
which we call εe3 consists of the 5 tokens.
{Review,Rating, Text, Each token of εe3 occurs
once in Pe1 twice in Pe2 and so on. The basic intuition
behind LFEQs is that it is very unlikely for LFEQs to be
formed by “chance”. Almost always, LFEQs are formed by
tokens associated with the same type constructor in the
unknown) template used to create the input pages. This
intuition is easily verified for the running example where
all tokens of εe1(Spec. εe3) are associated with Te1(Res
εe3) of Se in Te2.For this simple example, Sub-module
HANDINV does not play any role, but for real pages
HANDINV detects and removes “invalid” LFEQs — those
that are not formed by tokens associated with a type
constructor.

For this simple example, Sub-module HANDINV does
not play any role, but for real pages HANDINV detects and
removes “invalid” LFEQs — those that are not formed by
tokens associated with a type constructor.

4. Work Done

(a)

(b)

Fig. 2. Performance study varying length of signature and

essential path threshold. (a) Execution times. (b) MDL
costs.

The result is provided in Fig. 13c. In x-axis, 1 means itself
and 0.5 means 0:5 _ t_. When the threshold is zero, nothing
is pruned by the threshold but, with a small threshold such
as 0:1 _ t_, the number of essential paths evidently
decreases. Between 0:1 _ t_ and t_, the number of essential
paths is almost the same but that with 1:1 suddenly
decreases by about 90 percent. It shows that the paths from

contents are eliminated by a small threshold such as 0:1 _
t_ and almost all paths from templates survive until the
threshold becomes t_. If the threshold is too large, only
generally common paths such as “Document
nhhtmlinhbodyi” remain. Thus, we can conclude that t_ is
very effective to identify templates.
Evaluation of clustering results. We report in detail the
clustering results of TEXT-MAX with 1,000 documents.
We manually opened all the documents and checked the
correctness of each cluster. TEXT-MAX partitioned 1,000
documents into 77 clusters. Among them, 32 clusters cover
833 documents and the rest of clusters have a single
document or very small number of documents. If a cluster
has too few instances of its template, the template from the
cluster is not reliable. Since Rank Mass crawled documents
without considering the template extraction, some clusters
have only few instances.

5. CONCLUSION AND FUTURE WORK
 This paper presented an algorithm, EXALG, for
extracting structured data from a collection of web pages
generated from a common template. EXALG first discovers
the unknown template that generated the pages and uses the
discovered template to extract the data from the input
pages. EXALG uses two novel concepts, equivalence
classes and differentiating roles, to discover the template.
Our experiments on several collections of web pages,
drawn from many well-known data rich sites, indicate that
EXALG is extremely good in extracting the data from the
web pages. Another desirable feature of EXALG is that it
does not completely fail to extract any data even when
some of the assumptions made by EXALG are not met by
the input collection. In other words the impact of the failed
assumptions is limited to a few attributes.

REFERENCES

[1]. Arasu and H. Garcia-Molina, “Extracting Structured Data from Web
Pages,” Proc. ACM SIGMOD, 2003.

[2]. A.Z. Broder, M. Charikar, A.M. Frieze, and M. Mitzenmacher,
“Min-Wise Independent Permutations,” J. Computer and System
Sciences, vol. 60, no. 3, pp. 630-659, 2000.

[3]. D. Chakrabarti, R. Kumar, and K. Punera, “Page-Level Template
Detection via Isotonic Smoothing,” Proc. 16th Int’l Conf. World
Wide Web (WWW), 2007.

[4]. Z. Chen, F. Korn, N. Koudas, and S. Muithukrishnan, “Selectivity
Estimation for Boolean Queries,” Proc. ACM SIGMOD-
SIGACTSIGART Symp. Principles of Database Systems (PODS),
2000.

[5]. V. Crescenzi, G. Mecca, and P. Merialdo, “Roadrunner: Towards
Automatic Data Extraction from Large Web Sites,” Proc. 27th Int’l
Conf. Very Large Data Bases (VLDB), 2001.

[6]. V. Crescenzi, P. Merialdo, and P. Missier, “Clustering Web Pages
Based on Their Structure,” Data and Knowledge Eng., vol. 54, pp.
279- 299, 2005.

[7]. I.S. Dhillon, S. Mallela, and D.S. Modha, “Information-Theoretic
Co-Clustering,” Proc. ACM SIGKDD, 2003.

[8]. D. Gibson, K. Punera, and A. Tomkins, “The Volume and Evolution
of Web Page Templates,” Proc. 14th Int’l Conf. World Wide Web
(WWW), 2005.

[9]. B. Long, Z. Zhang, and P.S. Yu, “Co-Clustering by Block Value
Decomposition,” Proc. ACM SIGKDD, 2005.

[10]. F. Pan, X. Zhang, and W. Wang, “Crd: Fast Co-Clustering on Large
Data Sets Utilizing Sampling-Based Matrix Decomposition,” Proc.
ACM SIGMOD, 2008.

Rashmi D Thakare et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (2) , 2015, 1296-1299

www.ijcsit.com 1299

