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Abstract-Many web sites contain large sets of pages generated 
using a common template or layout. For example, Amazon 
lays out the author, title, comments, etc. in the same way in all 
its book pages. The values used to generate the pages (e.g., the 
author, title,...) typically come from a database. In this paper, 
we study the problem of automatically extracting the database 
values from the web pages without any learning examples or 
other similar human input. We formally define the notion of a 
template, and propose a model that describes how values are 
encoded into pages using a template. We present an extraction 
algorithm that uses sets of words that have similar occurrence 
pattern in the input pages, to construct the template. The 
constructed template is then used to extract values from the 
pages. We show experimentally that the extracted values 
make semantic sense in most cases.  

Keywords: - Webpage sectioning, webpage segmentation, 
template detection, isotonic regression. Information 
extraction; Wrapper induction; Clustering; Web modelling; 
Web mining. 

1. INTRODUCTION
The World Wide Web is a vast and rapidly growing 

source of information. Most of this information is in 
unstructured HTML pages that are targeted at a human 
audience. The unstructured nature of these pages makes it 
hard to do sophisticated querying over the information 
present in them. There are, however, many web sites that 
contain a large collection of pages that have more 
“structure.” These web pages encode data from an 
underlying structured source, like a relational database, and 
are typically generated dynamically. 

An example of such a collection is the set of book pages 
in Amazon shows two example book pages from Amazon 
[1]. 

The classic analysis of hashing schemes often entails the 
assumption that the hash functions used are random. More 
precisely, the assumption is that keys belonging to a 
universe U are hashed into a table of size M by choosing a 
function h uniformly at random among all the functions U ! 
[M]. (The notation [M] stands for the set {0, . . . , M−1}. 
This is slightly non-standard, but convenient for our 
purposes.) This assumption is impractical since just 
specifying such a function requires |U| log(M) bits1, which 
usually far exceeds the available storage[2].The increased 
use of content-management systems to generate web pages 
has significantly enriched the browsing experience of end 
users; the multitude of site navigation links, sidebars, 
copyright notices, and timestamps provide easy to access 

and often useful information to the users. From an objective 
standpoint, however, these “template” structures pollute the 
content by digressing from the main topic of discourse of 
the webpage. Furthermore, they can cripple the 
performance of many modules of search engines, including 
the index, ranking function, summarization, duplicate 
detection, etc. With template content currently constituting 
more than half of all HTML on the web and growing 
steadily [3, 11], it is imperative that search engines develop 
scalable tools and techniques to reliably detect templates on 
a webpage. Most existing methods for template detection 
operate on a per website basis by analyzing several web 
pages from the site and identifying content and/or structure 
that repeats across many pages. While these “site-level” 
template detection methods offer a lot of promise, they are 
of limited use because of the following two reasons. First, 
site-level templates constitute only a small fraction of all 
templates on the web[3]. In a variety of applications 
ranging from optimizing queries on alphanumeric attributes 
to providing approximate counts of documents containing 
several query terms, there is an increasing need to quickly 
and reliably estimate the number of strings (tuples, 
documents, etc.) matching a Boolean query. Boolean 
queries in this context consist of substring predicates 
composed using Boolean operators. While there has been 
some work in estimating the selectivity of substring 
queries, the more general problem of estimating the 
selectivity of Boolean queries over substring predicates has 
not been studied[4]. As well as the paper investigates 
techniques for extracting data from HTML sites through the 
use of automatically generated wrappers. To automate the 
wrapper generation and the data extraction process, the 
paper develops a novel technique to compare HTML pages 
and generate a wrapper based on their similarities and 
differences. Experimental results on real-life data-intensive 
Web sites confirm the feasibility of the approach[5]. A 
large number of Web sites contain highly structured 
regions. The pages contained in these regions are generated 
automatically, either statically or dynamically, by programs 
that extract the data from a back-end database and embed 
them into an HTML template. As a consequence, pages 
generated by the same program exhibit common structure 
and layout, while differing in content[6].Clustering is a 
fundamental tool in unsupervised learning that is used to 
group together similar objects, and has practical importance 
in a wide variety of applications such as text, web-log and 
market-basket data analysis. Typically, the data that arises 
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in these applications is arranged as a contingency or co-
occurrence table, such as, word-document co-occurrence 
table or webpage-user browsing data. Most clustering 
algorithms focus on one-way clustering, i.e., cluster one 
dimension of the table based on similarities along the 
second dimension. For example, documents may be 
clustered based upon their word distributions or words may 
be clustered based upon their distribution amongst 
documents[7]. Template material is common content or 
formatting that appears on multiple pages of a site. Almost 
all pages on the web today contain template material to a 
greater or lesser extent. Common examples include 
navigation sidebars containing links along the left or right 
side of the page; corporate logos that appear in a uniform 
location on all pages; standard background colours or 
styles; headers or dropdown menus along the top with links 
to products, locations, and contact information; banner 
advertisements; and footers containing links to homepages 
or copyright information. The template mechanism is used 
to support many purposes, particularly navigation, 
presentation, and branding[8]. The clustering procedure 
arises in many disciplines and has a wide range of 
applications. In many applications, such as document 
clustering, collaborative filtering, and microarray analysis, 
the data can be formulated as a two dimensional matrix 
representing a set of dyadic data. Dyadic data refer to a 
domain with two finite sets of objects in which 
observations are made for dyads, i.e., pairs with one 
element from either set. For the dyadic data in these 
applications, co-clustering both dimensions of the data 
matrix simultaneously is often more desirable than 
traditional oneway clustering. This is due to the fact that 
co-clustering takes the benefit of exploiting the duality 
between rows and columns to effectively deal with the high 
dimensional and sparse data that is typical in many 
applications. Moreover, there is an additional benefit for 
co-clustering to provide both row clusters and column 
clusters at same time. For example, we may be interested in 
simultaneously clustering genes and experimental 
conditions in bioinformatics applications simultaneously 
clustering documents and words in text mining 
simultaneously clustering users and movies in collaborative 
filtering[9]. Clustering is a fundamental data mining 
problem with a wide variety of applications. It seeks good 
partitioning of the data points such that points in the same 
cluster are similar to each other and the points in different 
clusters are dissimilar. Many real-life applications involve 
large data matrices. For example, in text and web log 
analysis, the term-document data can be represented as 
contingency table. In biology domain, the gene expression 
data are organized in matrices with rows representing genes 
and columns representing experimental conditions. 
Recently there has been a growing research interest in 
developing co-clustering algorithms that simultaneously 
cluster both columns and rows of the data matrix. Co-
clustering takes advantage of the duality between rows and 
columns to effectively deal with the high dimensional 
data[10]. The MDL (Minimum Description Length) 
principle for statistical model selection and statistical 
inference is based on the simple idea that the best way to 

capture regular features in data is to construct a model in a 
certain class which permits the shortest description of the 
data and the model itself. Here, a model is a probability 
measure, and the class is a parametric collection of such 
models; an example is the likelihood function. Despite its 
simplicity the idea represents a drastically different view of 
modelling. First, the model class has to be such that its 
members can be described or encoded in terms of a finite 
number of symbols, say the binary. We give a brief 
description of the elementary coding theory needed in the 
appendix. This requirement also means that the traditional 
nonparametric models as some sort of idealized and 
imagined data generating distributions cannot be used 
unless they can be ¯tted to data. In the MDL approach we 
just ¯t models to data, and no assumption that the data are a 
sample from a `true' random variable is needed. This in one 
stroke eliminates the difficulty in the other approaches to 
modelling that the more complex a model we ¯t the better 
estimate of the `truth' we get, a problem that has had only 
ad hoc solutions[11]. The availability of tools that simplify 
the design and implementation of data-intensive web sites 
has greatly contributed to the explosive growth of the Web. 
These tools involve “a combination of templates and design 
conventions” including templates for common types and 
classes of pages, as well as sets of templates for common 
pages in sub-sites. By automatically populating these 
templates with content, web site designers and content 
producers of large web portals achieve high levels of 
productivity and improve the usability of the sites by 
enforcing the uniformity of the pages[12]. 

 
2. LITERATURE SURVEY :- 

[1].Arasu and H. Garcia-Molina-  
Arvind Arasu Hector Garcia-Molina They presented an 

algorithm, EXALG, for extracting structured data from a 
collection of web pages generated from a common 
template. EXALG first discovers the unknown template 
that generated the pages and uses the discovered template 
to extract the data from the input pages. EXALG uses two 
novel concepts,equivalence classes and differentiating 
roles, to discover the template. Our experiments on several 
collections of web pages, drawn from many well-known 
data rich sites, indicate that EXALG is extremely good in 
extracting the data from the web pages. Another desirable 
feature of EXALG is that it does not completely fail to 
extract any data even when some of the assumptions made 
by EXALG are not met by the input collection. In other 
words the impact of the failed assumptions is limited to a 
few attributes. There are several interesting directions for 
future work. The first direction is to develop techniques for 
crawling, indexing and providing querying support for the 
“structured” pages in the web. Clearly, a lot of information 
in these pages is lost when naive key word indexing, and 
searching is used. they indicate two specific problems in 
this direction. First, how do we automatically locate 
collections of pages that are · structured? Second, is it 
feasible to generate some large “database” from these 
pages? Any technique for solving the latter problem has to 
be much less sophisticated than the one discussed here, 
possibly by sacrificing accuracy for efficiency. Also when 
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we work at the scale of the entire web we might be able to 
leverage the redundancy of the data on the web as in Brin 
The second direction of work is to develop techniques for 
automatically annotating the extracted data, possibly using 
the words that appear in the template. 
[3]. D. Chakrabarti, R. Kumar, and K. Punera 

They presented a framework for classifier based page-
level template detection that constructs the training data 
and learns the notion of “templateness” automatically using 
the site-level template detection approach. We formulated 
the smoothing of classifier assigned templateness scores as 
a regularized  isotonic regression problem on trees, and 
presented an efficient algorithm to solve it exactly; this 
may be of independent interest. Using human-labeled data 
we empirically validated our system’s performance, and 
showed that template detection at the page-level, when 
used as a pre-processing step to web mining applications, 
such as duplicate detection and webpage classification, can 
boost accuracy significantly. 
[4] Z. Chen,F. Korn,N. Koudas, and S. Muithukrishnan 
They generalize the problem of substring selec- tivity 
estimation for Boolean predicates. Our novel idea is to 
capture correlations between Boolean query predicates in a 
space-e client but approximate manner. We employ a 
Monte Carlo technique called set hashing to succinctly 
represent the set of strings containing a given substring 
predicate as a signature vector of hash values. Correlations 
among substring predicates can then be generated by 
operating on these signatures. We present an algorithm to 
estimate the selectivity of any Boolean query and 
experimentally demonstrate the superiority of our 
approach. 
[6] V. Crescenzi, P. Merialdo, and P. Missier 

In this paper They have presented an algorithm to cluster 
pages from a data intensive Web site, based on the page 
structure. The structural similarity among pages is defined 
with respect to their DOM trees. The algorithm identifies 
the main classes of pages offered by the site by visiting a 
small yet representative number of pages. The resulting 
clustering can be used to build a model that describes the 
structure of the site in terms of classes of pages and links 
among them. The model can be used for several purposes. 
First, for each class of pages in the model we can generate 
a wrapper: the visited pages which have been grouped into 
one cluster can be used as input samples for automatic 
wrapper generator systems, overcoming the issue of the 
manual selection phase. Once a wrapper for each class has 
been built, the model can be used also for classifying pages, 
with the objective of determining which wrapper has to be 
applied against a given page. 
[7]. I.S. Dhillon, S. Mallela, and D.S. Modha 

They have provided an information-theoretic formulation 
for co-clustering, and presented a simple-to-implement, 
top-down, computationally efficient, principled algorithm 
that intertwines row and column clusterings at all stages 
and is guaranteed to reach a local minimum in a finite 
number of steps. We have presented examples to motivate 
the new concepts and to illustrate the efficacy of our 
algorithm. In particular, word-document matrices that arise 
in information retrieval are known to be highly sparse [7]. 

For such sparse high dimensional data, even if one is only 
interested in document clustering, our results show that co-
clustering is more effective than a plain clustering of just 
documents. The reason is that when co-clustering is 
employed, we effectively use word clusters as underlying 
features and not individual words. This amounts to implicit 
and adaptive dimensionality reduction and noise removal 
leading to better clusters. As a side benefit, co-clustering 
can be used to annotate the document clusters. 

 
3. PROPOSED APPROACH FRAMEWORK AND DESIGN  

3.1 Problem Definition 
we generalize the problem of substring selectivity 

estimation for Boolean predicates. Our novel idea is to 
capture correlations between Boolean query predicates in a 
space-e_ client but approximate manner. We employ a 
Monte Carlo technique called set hashing to succinctly 
represent the set of strings containing a given substring 
predicate as a signature vector of hash values. Correlations 
among substring predicates can then be generated by 
operating on these signatures. We present an algorithm to 
estimate the selectivity of any Boolean query and 
experimentally demonstrate the superiority of our 
approach. While there has been some work in estimating 
the selectivity of substring queries, the more general 
problem of estimating the selectivity of Boolean queries 
over substring predicates has not been studied. 
 
3.2 Proposed Architecture and Design 

EXALG to solve the EXTRACT problem. Figure 2 
shows the different sub-modules of EXALG. Broadly, 
EXALG works in two stages. In the first stage (ECGM), it 
discovers sets of tokens associated with the same type 
constructor in the (unknown) template used to create the 
input pages. 

In the second stage (Analysis), it uses the above sets to 
deduce the template. The deduced template is then 
used to extract the values encoded in the pages. This 
section outlines EXALG for our running example.  
 

 
Figure 1: Modules of EXALG 

 
In the first stage, EXALG (within Sub-module FINDEQ) 

computes “equivalence classes” — sets of tokens 
having the same frequency of occurrence in every page 

in Pe. An example of an equivalence class(call εe1) is the 
set of 8 tokens{<html>,<body>,Book.....,</html>} where 
each token occurs exactly once in every input page. There 
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are other equivalence classes. EXALG retains only the 
equivalence classes that are large and whose tokens occur 
in a large number of input pages. We call such equivalence 
classes _ LFEQs (for Large and Frequently occurring 
Equivalence classes). For the running example there are 
two LFEQs. The first is εe1 shown above. The second, 
which we call εe3 consists of the 5 tokens. 
{<li>Review,Rating, Text,</li> Each token of  εe3  occurs 
once in Pe1 twice in Pe2 and so on. The basic intuition 
behind LFEQs is that it is very unlikely for LFEQs to be 
formed by “chance”. Almost always, LFEQs are formed by 
tokens associated with the same type constructor in the 
unknown) template used to create the input pages. This 
intuition is easily verified for the running example where 
all tokens of εe1(Spec. εe3) are associated with Te1(Res 
εe3) of Se in Te2.For this simple example, Sub-module 
HANDINV does not play any role, but for real pages 
HANDINV detects and removes “invalid” LFEQs — those 
that are not formed by tokens associated with a type 
constructor. 

For this simple example, Sub-module HANDINV does 
not play any role, but for real pages HANDINV detects and 
removes “invalid” LFEQs — those that are not formed by 
tokens associated with a type constructor. 

 
4. Work Done  

 
(a) 

 
(b) 

 
Fig. 2. Performance study varying length of signature and 

essential path threshold. (a) Execution times. (b) MDL 
costs. 

 
The result is provided in Fig. 13c. In x-axis, 1 means itself 
and 0.5 means 0:5 _ t_. When the threshold is zero, nothing 
is pruned by the threshold but, with a small threshold such 
as 0:1 _ t_, the number of essential paths evidently 
decreases. Between 0:1 _ t_ and t_, the number of essential 
paths is almost the same but that with 1:1 suddenly 
decreases by about 90 percent. It shows that the paths from 

contents are eliminated by a small threshold such as 0:1 _ 
t_ and almost all paths from templates survive until the 
threshold becomes t_. If the threshold is too large, only 
generally common paths such as “Document 
nhhtmlinhbodyi” remain. Thus, we can conclude that t_ is 
very effective to identify templates. 
Evaluation of clustering results. We report in detail the 
clustering results of TEXT-MAX with 1,000 documents. 
We manually opened all the documents and checked the 
correctness of each cluster. TEXT-MAX partitioned 1,000 
documents into 77 clusters. Among them, 32 clusters cover 
833 documents and the rest of clusters have a single 
document or very small number of documents. If a cluster 
has too few instances of its template, the template from the 
cluster is not reliable. Since Rank Mass crawled documents 
without considering the template extraction, some clusters 
have only few instances. 
 

5.  CONCLUSION AND FUTURE WORK  
    This paper presented an algorithm, EXALG, for 
extracting structured data from a collection of web pages 
generated from a common template. EXALG first discovers 
the unknown template that generated the pages and uses the 
discovered template to extract the data from the input 
pages. EXALG uses two novel concepts, equivalence 
classes and differentiating roles, to discover the template. 
Our experiments on several collections of web pages, 
drawn from many well-known data rich sites, indicate that 
EXALG is extremely good in extracting the data from the 
web pages. Another desirable feature of EXALG is that it 
does not completely fail to extract any data even when 
some of the assumptions made by EXALG are not met by 
the input collection. In other words the impact of the failed 
assumptions is limited to a few attributes. 
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